Automated Service Design with Cerulean
Project Showcase

Vaastav Anand Alok Gautam Kumbhare Celine Irvene
MPI-SWS Microsoft Microsoft
Germany USA USA

Chetan Bansal Gagan Somashekar Jonathan Mace
Microsoft Microsoft Microsoft

USA USA USA
Pedro Las-Casas Ricardo Bianchini Rodrigo Fonseca
Microsoft Microsoft Microsoft
USA USA USA

Motivation

Modern cloud applications are commonly developed as microser-
vice systems [2]. In these systems, the application is decomposed
into loosely-coupled lightweight services connected over the net-
work, each responsible for providing a single high-level business
capability in the system.

Automating the design, operation, and optimization of these
systems, has been a longstanding [3], but also an elusive goal. This
is due to two key contributing factors. First, there was a lack of
standardization of tools that can help develop, implement, and im-
prove systems. Second, there was no way to automatically convert
high-level requirements of the system into corresponding func-
tional implementations, leading to long and arduous engineering
processes that often leave gaps.

However, recent trends makes it feasible to revisit these goals:
the rise of standardization tools, and of Large Language Models
(LLMs). The rise of standardization tools like Kubernetes [7] for
deployment, Blueprint [1] and ServiceWeaver [4] for development
and implementation generation, and OpenTelemetry [6] for observ-
ability, have provided a backbone that developers can use to build
robust systems. LLMs, on the other hand, provide a way of repre-
senting user requirements at a high-level, in natural language, as
well as generative abilities that can be used to develop applications
from the high-level descriptions.

In this project showcase, we introduce Cerulean, a modular,
extensible, human-in-the-loop system that combines standardized
tools with the expressive power of LLMs to automatically generate
implementations of microservice systems.

Challenges

While standardized tools and LLMs provide the basic blocks for
enabling automating system design and implementation, there still
remain a variety of challenges to use these techniques in conjunc-
tion, due to the nondeterministic nature LLMs. We highlight these
fundamental challenges below.

Lack of Correctness guarantees. The knowledge base of LLMs
may consist of buggy, incorrect, and poorly written code that can
degrade the quality of the generated code. Correctness of the gener-
ated code is hard to check and it grows in difficulty with the increase
in the size of the generated code. Moreover, if we generate both

implementations and tests using LLMs, then we might encounter
situations where both tests and code might be incorrect.

User requirements mismatch. LLMs are well-known to suf-
fer from faithful hallucinations, especially instruction inconsis-
tency [5], in which LLMs deviate from user directives. This can
result in generated code not containing the features desired by the
users. This can also potentially lead to an unexpected design being
used by the LLMs for the desired system.

Lack of explainability. Developers often find it hard to understand
large foreign codebases. Trying to understand large amounts of
code generated by LLMs poses the same problem as developers
now need to understand code produced by an Al model. Failing to
correctly understand the generated code and blindly copy-pasting
the code can lead to bugs and monetary loss.

Cerulean Design

Cerulean combines LLM-based generation techniques with existing
techniques from software development cycle to ensure that the
generated system is correct. Cerulean manifests this combination
through the process of hierarchical generation, comprising genera-
tion at multiple abstraction levels. Each level generates a validated
representation of the user requirements that is used as input for
generating artifacts in the next level of abstraction.

Figure 1 provides an overview of our current working prototype
of hierarchical generation, implemented in 3k lines of python code.
The prototype currently generates microservice systems in Go.
Cerulean starts the generation procedure at the highest level of
abstraction of a system and then iteratively drills down deeper into
increasingly lower levels of abstraction. At each level, Cerulean
provides a validation procedure that validates the LLM-generated
output as well as explainability artifacts that can help users reason
about the generated system. The hierarchical generation process is
modular and can be extended with other components that provide
stronger guarantees such as formal verification. Below, we provide
details about the generation procedure of our current prototype.
Input Requirements. Cerulean expects the user to provide as
input the functional and behavioral requirements of the desired
system. These include a brief overview description of the system
and user stories describing the functional behavior of the system.

Conferendeldstdulir20id, WakhTagtiem BKGb$vre, Celine Irvene, Chetan Bansal,

Gagan Somashekar, Jonathan Mace, Pedro Las-Casas, Ricardo Bianchini, and Rodrigo Fonseca

Architecture Generation

Interface Generation

Impl Generation

[—"—
==
8|} — ==
|

@

LLM

Interfaces

LLM Architecture

Developer Requirements

Refinement

! o —

LLM

O
o
O

Generated
System

)|
Generato

—__© =

Analysis Toolbox

Docs

Figure 1: Hierarchical generation for automated system design

Architecture Design. Based on the provided requirements, Cerulean
prompts the LLM to generate the high-level architecture of the sys-
tem. To provide explainability, Cerulean converts the generated list
of modular components into a dependency graph to show to the
operator. The operator validates the generated design or optionally
provides a critique to refine the architecture design, which is used
by Cerulean to generate an updated design. This operator-in-the-
loop critique-based refinement of the generated design continues
until the operator is satisfied with the generated design.

Next, Cerulean augments the dependency graph with databases

and caches, generates schemas for the databases, and connects
existing components to the newly added databases and caches.
To ensure correctness of the generated schemas, Cerulean uses
operator-in-the-loop critique-based refinement.
Interface Design. At the next level of abstraction, Cerulean gen-
erates the interfaces of the components defined in the dependency
graph from the previous phase. The generation proceeds in re-
verse topological order of the dependency graph. The generated
interface for each component contains a list of functions and their
corresponding function signatures that can be used by other com-
ponents for interaction. For each component, Cerulean includes
the previously generated interfaces of the dependencies of the com-
ponent to ensure that the generated interface correctly provide
pathways into the dependent components.

To ensure correctness, the operator can optionally do critique-
based refinement to add or remove functions in each interface. In
this phase, Cerulean provides explainability in two ways. First, for
each interface, documentation is generated that describes what the
interface does at a high level, descriptions for individual functions
in the interface, and an implementation plan consisting of the list
of all outgoing calls to dependencies for each function. Second,
the generated interfaces are combined with the previously existing
dependency graph to generate a UML Class diagram to combine
the generated interfaces with the dependency graph.
Implementation Generation. The implementation generation
process follows the principle of test-driven development. To in-
stantiate test-driven development, the generation process is broken
down into three individual phases. In the first phase, Cerulean uses
the documentation, interfaces, and the implementation plans gen-
erated in the previous level to generate unit tests for each function
in each component’s interface. The generated unit test uses mock
objects to handle dependencies of the component. In the second
phase, the process once again uses the previously generated doc-
umentation and interface to generate the implementation of each

function. To ensure that the generated code is valid, Cerulean exe-
cutes static analysis passes on the generated code. If the generated
code passes the static checks then Cerulean proceeds to the next
phase. If the static checks fail, then Cerulean uses the error output
as part of the refinement context to generate a new implementation
with the bugs fixed. This continues until the static checks on the
code pass. In the final phase, Cerulean refines the generated tests
and implementations. To do the refinement, Cerulean first runs the
generated tests against the generated implementation with code
coverage reporting enabled. If all tests do not pass, then Cerulean
gathers the test failure output and provides that as context along
with the generated implementation and test to the LLM to improve
the implementation and/or test such that all tests pass. This refine-
ment procedure continues until either all tests pass or Cerulean
exceeds a maximum number of retries.

E |Input

HEE Output
106443

167793

Log # Tokens

Iface Gen
Generation Phase

Arch Gen Impl Gen

Figure 2: Cost of using Cerulean

Initialization Generation. In the last phase, Cerulean generates
the scripts needed to initialize the system. These include scripts
to correctly setup the databases, scripts to setup the initial state
of the various components, and the scripts to apply the generated
behavioural properties (observability, security, etc) on to the gen-
erated system. To apply the behavioral properties, we convert the
generated implementations and behavioral properties into the input
specifications of the Blueprint [1] compiler as their abstractions
allow us to transparently add features to a microservice application.
Preliminary Results. To test out the efficacy of Cerulean, we
prompt Cerulean to design a shoe-sharing application where users
can loan their shoes to other people. We choose this application
as it is a unseen application from the perspective of the LLMs and
unlikely to be in its training data. The initial requirements are
provided in 164 words.

Automated Service Design with Cerulean
Project Showcase

To generate the system, Cerulean took 12.7 minutes and gen-
erated 6 user-defined services backed by 5 different databases. In
total, the system contained 30 different endpoints across the 6 user-
defined services. For the 30 different endpoints, Cerulean generated
43 different unit tests with a total test success rate of 76.7% when ex-
ecuted against the generated implementation. The generated tests
achieved a 100% test coverage for 18 of the 30 endpoints, with total
coverage of 90.2%. In total, Cerulean made 140 calls to the LLM to
generate the system. Figure 2 shows the total number of tokens
input by Cerulean to the various LLM calls and the total number of
output tokens generated.

References

[1] V. Anand, D. Garg, A. Kaufmann, and J. Mace. Blueprint: A toolchain for highly-
reconfigurable microservice applications. In Proceedings of the 29th Symposium on

Conference’17, July 2017, Washington, DC, USA

Operating Systems Principles, pages 482-497, 2023.

A. Cockcroft. Microservices workshop: Why, what, and how to get there. (April
2016). Retrieved October 2020 from https://www.slideshare.net/adriancockcroft/
microservices-workshop- craft-conference, 2016.

A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing era. IBM
systems Journal, 42(1):5-18, 2003.

S. Ghemawat, R. Grandl, S. Petrovic, M. Whittaker, P. Patel, I. Posva, and A. Vahdat.
Towards modern development of cloud applications. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, pages 110-117, 2023.

L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng,
B. Qin, et al. A survey on hallucination in large language models: Principles,
taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232, 2023.
OpenTelemetry. High-quality, ubiquitous, and portable telemetry to enable effec-
tive observability. Accessed August 2024 from https://opentelemetry.io/.

E. Shanks. Kubernetes - desired state and control loops. Accessed July, 2024
from https://theithollow.com/2019/09/16/kubernetes- desired- state-and-control-
loops/, 2019.

https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://opentelemetry.io/
https://theithollow.com/2019/09/16/kubernetes-desired-state-and-control-loops/
https://theithollow.com/2019/09/16/kubernetes-desired-state-and-control-loops/

	References

